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Abstract 

Vessel wall MR imaging (VW-MRI) has been introduced into clinical practice and 

applied to a variety of diseases and its usefulness has been reported. High-resolution VW-

MRI is essential in the diagnostic workup and provides more information than other 

routine MR imaging protocols. VW-MRI is useful in assessing lesion location, 

morphology, and severity. Additional information, such as vessel wall enhancement, 

which is useful in the differential diagnosis of atherosclerotic disease and vasculitis could 

be assessed by this special imaging technique. This review describes the VW-MRI 

technique and its clinical applications in arterial disease, venous disease, vasculitis, and 

leptomeningeal disease.  
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4 
 

gradient echo, GRE; 

 

 

Introduction 

 Ischemic stroke is the common neurologic diseases and following five broad 

subtypes has been classified to represent most clinical scenarios in the Trial of Org 10 

172 in Acute Stroke Treatment (TOAST) system: large artery atherosclerosis, small artery 

occlusion, cardioembolism, other demonstrated cause, and undetermined cause [1,2]. 

Intracranial atherosclerosis is one of major causes of ischemic stroke, and vessel wall MR 

imaging (VW-MRI) is suitable for evaluation of intracranial atherosclerosis compared 

with other intraluminal imaging such as transcranial Doppler, time-of-flight (TOF) MR 

angiography (MRA), contrast enhanced (CE) CT angiography (CTA), and digital 

subtraction angiography (DSA). For these reasons, high-resolution VW-MRI has been 

gaining interest for detailed visualization of intracranial vessel walls. The subtype 

classification to determine the causes of stroke is important in clinical practices [1,2]. The 

evidence of extracranial or intracranial disease supports large artery atherosclerosis [3,4], 

and negative results on VW-MRI are also important for the subtype determination of 

cardioembolisms and undetermined causes. 
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 VW-MRI has been introduced in clinical practices, applied to various diseases, 

and its usefulness has been reported. The purpose of this paper was to review imaging 

findings of VW-MRI.  

 

Techniques of VW-MRI 

 VW-MRI has been used mainly to evaluate vulnerable plaque in extracranial 

carotid artery with 2D imaging such as double inversion recovery previously [5]. The 

drawbacks of 2D imaging are low slice-selective resolution compared with in-plane 

resolution, and partial volume effect. Technical development has provided various options 

for plaque imaging such as 3D fast spin-echo (FSE) imaging with variable flip angle 

refocusing pulse (VFA). Pseudo steady state can be achieved by prospectively controlled 

signal decay at the beginning of the echo train, thus constant signal intensity is maintained 

[6]. Black blood effect is brought about since phase dispersion arises from the intravoxel 

blood flow velocity variation as well as the uncompensated first-order gradient moment 

during each echo readout [7]. Further phase dispersion occurs due to stimulated echoes 

introduced by the low-flip-angle refocusing pulses [8,9].  

 3D MR imaging with high spatial resolution and improved anatomic coverage 

became possible by optimized and efficient k-space trajectories with sampling in both in-
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plane and through-slab phase-encode directions [10]. Higher acceleration in phase and 

partition direction can be applied for 3D FSE with various techniques including 

compressed sensing [11,12], thus wide coverage and scan time reduction become possible. 

Availability of multiplanar reconstruction (MPR) for suitable visualization of vessel wall 

is another advantage of 3D imaging, and both vessel segment focused VW-MRI and 

whole brain VW-MRI have been performed recently [13].  

 VW-MRI techniques rely on blood flow to achieve blood-signal suppression. 

Incomplete signal suppression in the periphery of the lumen can mimic vessel wall 

thickening and/or wall enhancement. Recirculating or slow flow within an aneurysm, low 

velocity flow in a dilated artery, and retrograde filling of a branch artery via 

leptomeningeal collaterals may result in incomplete signal suppression [14,15]. Therefore, 

further intravoxel dephasing effect can be brought about by additional preparation pulses 

and followings have been developed to achieve better black blood effect as well as 

cerebrospinal fluid (CSF) suppression: Diffusion-sensitizing gradient preparation 

(motion-sensitized driven equilibrium, MSDE) [7,16], T2-prepared inversion recovery 

[17], a flip-down radiofrequency pulse module [18], and Delays Alternating with 

Nutation for Tailored Excitation (DANTE) [19,20]. Although many articles using VW-

MRI with MSDE have been reported, DANTE has been reported to produce better signal 
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to noise ratio (SNR) compared with MSDE [20]. 

 DANTE pulse is a continuous irradiation of short duration hard pulse with small 

flip angle, and it has been used for frequency selective excitation in NMR spectroscopy 

[21] and cardiac tagging [22]. Recently DANTE pulse is used for VW-MRI with the 

advantage of signal suppression of both blood flow and CSF signal [20,23-26]. CSF is 

known to affect vessel walls [27]. DANTE pulse is also used for intravascular signal 

suppression of arterial spin labeling [28], detection of brain metastasis [29], and 

neuromelanin-sensitive MRI due to certain magnetization transfer (MT) effect [30]. With 

acceleration of parallel imaging, high resolution vessel wall imaging using DANTE pulse 

can be available in clinically feasible scan time [30,31]. 

 

Deep learning application for VW-MRI 

 Deep learning technique have been introduced for acute ischemic stroke and 

plaque identification. Hyperdense middle cerebral artery (MCA) sign on CT is a well-

known sign of acute embolism and nowadays deep learning-assisted identification has 

been introduced [32]. Moreover, convolutional neural network (CNN)-based domain 

adaptive lesion classification could locate target arteries and distinguish carotid 

atherosclerotic lesions [33].  
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 Deep learning can be used for improvement of SNR, and CNN improved overall 

image quality for high resolution VW-MRI [34]. 

 

Clinical application of VW-MRI - Arterial diseases 

Carotid artery plaque 

 Rupture of vulnerable plaque is known to be an important cause of stroke rather 

than the luminal stenosis [35]. Chronic inflammation occurs with atherosclerosis, which 

is associated with the accumulation of lipids in the vessel wall and the formation of 

fibrous tissue [36]. Characteristics of carotid artery plaques such as intraplaque 

hemorrhage (IPH), a large lipid-rich necrotic core (LRNC), and a thin or ruptured fibrous 

cap (TRFC) are associated with cerebrovascular symptoms [37]. It is also reported that 

enlargement of an atherosclerotic artery with outward plaque growth or expansive 

remodeling, might be an important indicator of high-risk plaque [38,39].  

 VW-MRI is used to assess the morphology and characteristics of carotid artery 

plaques [5,40,41]. 2D spin echo T1WI technique used to be applied for intraplaque 

components of carotid artery plaque [40], however, recent MRI studies reported 

usefulness of 3D MRI in detection of hyperintensity plaque representing IPH, low 

intensity plaque representing LRNC, and very low intensity representing calcification 
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[42] (Figure 1).  

 

Acute ICA occlusion 

 Acute ICA occlusion usually causes severe long-term consequences [43]. There 

is no gold standard for differentiating acute from chronic carotid occlusion. Acute 

extracranial ICA occlusions were certainly defined when the estimated time of occlusion 

was within 7 days prior to CTA [44]. A ring of contrast enhancement in the carotid wall 

surrounding a hypodense thrombus in the lumen may help differentiate acute from 

chronic carotid artery occlusion [44]. On ultrasound examination, a mass arising from the 

ICA that fills the lumen and oscillates with the cardiac cycle is called an "oscillating 

thrombus" and is considered a specific finding of acute embolic internal carotid occlusive 

disease [45-47] (Figure 2).  

 

Chronic ICA occlusion 

 Chronic ICA occlusion (ICAO) is usually formed based on progressive 

atherosclerosis at the bifurcation of the carotid artery. Both symptomatic and 

asymptomatic chronic ICAO patients are at high risk for stroke [48]. As the occlusion 

duration gets longer, the thrombus gradually becomes fibrotic or calcified, and the 
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occluded segments of ICA undergoes atrophy. The atherosclerotic lesion typically 

develops from proximal part. The efficacy of carotid endarterectomy (CEA) has been 

established in symptomatic patients with moderate and greater stenosis [49]. 

 VW-MRI showed that the cervical and petrous segments of ICA are commonly 

involved in patients with symptomatic and asymptomatic chronic carotid artery occlusion 

[50]. VW-MRI also revealed that atrophic ICA lead to decreased ipsilateral-to-

contralateral diameter ratios at the cervical and petrous segments of ICA, which reduced 

endovascular recanalization success [48]. In 9 of 13 patients with symptomatic chronic 

carotid artery occlusion, VW-MRI showed contrast enhancement of the thrombus [50]. 

 

Diagnostic utility of VW-MRI in stroke 

 VW-MRI has provided supplemental information to luminal imaging [51], but 

diagnostic utility of VW-MRI in the work-up of ischemic stroke has also been reported. 

Kesav et al reported that VW-MRI reclassified etiology and influenced diagnostic 

evaluation in cases originally classified as “undetermined” etiologies and large 

(intracranial) artery atherosclerosis [52]. Song et al reported that VW-MRI changed 

etiologic classification, resulting in a higher percentage of cases reclassified as 

intracranial atherosclerotic disease [51]. VW-MRI can significantly improve diagnostic 
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differentiation of intracranial vascular disorders compared with luminal imaging alone 

[51,53,54]. 

 Specifically, vessel wall enhancement is important in diagnostic differentiation. 

Vessel wall enhancement may be associated with the culprit plaque in acute ischemic 

stroke. VW-MRI revealed vessel wall enhancement in 28 of 48 patients with acute 

ischemic stroke or transient ischemia attack [55]. Hyperintense plaques and plaque 

surface irregularity may predict A-to-A embolic infarction [56]. Meta-analysis of VW-

MRI showed plaques were detected in about half of acute ischemic stroke patients with 

non-stenotic intracranial MRA [57]. Intracranial high-risk plaque with zero or mild 

stenosis is associated with ischemic stroke and unfavorable outcome [57]. VW-MRI 

detected peri-thrombus vascular hyperintensity sign, tubular or tortuous hyperintensity 

surrounding a filling defect (intravascular thrombus), in 49% of acute ischemic stroke 

patients [58]. 

 The presence and intensity of vessel wall enhancement has been reported to help 

differentiate reversible cerebral vasoconstriction syndrome (RCVS) from vasculitis and 

atherosclerosis [54]. Vessel wall enhancement is associated with both acute and future 

stroke in patients with cerebral amyloid angiopathy [59].  
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Dissection 

 Cervical artery dissection (CAD) affects the cervical portion of the internal 

carotid artery (ICAD), the vertebral artery (VAD), or both. Cervical pain is often seen in 

VAD, and headache is seen in ICAD and VAD. The incidence of ICAD is estimated to be 

slightly higher than that of VAD [60]. CAD is a major cause of ischemic stroke in the 

young, and intramural hematoma detection significantly contributed to acute ischemic 

stroke pathogenesis in patients with suspected CAD [61,62]. ICA dissection occurs more 

often in the intracranial segment than in the cervical segment of the carotid artery [63].  

 Intracranial artery dissection, which is most common in Asia, accounted for up 

to 67–78% of all cervicocephalic artery dissections [43] (Figure 3). Intracranial artery 

dissections often affect the posterior circulation, especially at the intradural portion, more 

frequently than the anterior circulation [64,65]. Intracranial cerebral artery dissection of 

the anterior circulation was reported to be in relation with cortical subarachnoid 

hemorrhage (SAH) [66]. Intradural arteries are characterized by a well-developed internal 

elastic lamina, a paucity of elastic fibers in the media, little adventitial tissue, and no 

external elastic lamina [67], which may result in weaker supporting tissues than cervical 

arteries and may be associated with SAH [68]. (Figure 4) 

 On VW-MRI, intramural hematoma is iso-intensity during acute phase of CAD, 
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subsequently become hyperintensity a few days after the onset until about 2 months or 

later. Follow-up imaging is necessary for CAD, and intramural hematoma usually heal 

within 3-6 months.  

 

Carotid web 

 A carotid web is a thin intraluminal filling defect along the posterior wall of the 

carotid bulb observed on CTA or DSA. Carotid web may contribute to recurrent ipsilateral 

ischemic stroke in patients with no other determined stroke risks [69]. During a 12-month 

period, ipsilateral carotid webs were identified prospectively in 7 patients with acute 

ischemic stroke at the single institute [69]. In another series, carotid artery webs were 

found in 2 of 132 symptomatic patients with suspected stroke and in 7 of 312 

asymptomatic patients [70]. Pathological analysis for carotid web showed marked 

fibroelastic thickening of the intima. Although the incidence of carotid web is low, and 

CTA is the better tool for detection of carotid web, VW-MRI may depict the presence of 

carotid web (Figure 5). Neuroradiologists should check the abnormalities of carotid bulb 

especially in patients with recurrent ipsilateral stroke. 

 

Aneurysm  
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 MRA is suitable for serial follow-up of aneurysms and recent progress of 

compressed sensing technique enables high resolution MRA with wide coverage in 

clinical routines [71,72].  

 Although MRA or CTA can be easily performed and they provide intraluminal 

characteristics, VW-MRI provides the characteristics of aneurysmal wall. Wall thickening 

with enhancement was associated with unstable (ruptured, symptomatic, or undergoing 

morphological modification) intracranial aneurysms [73]. Several mechanisms including 

inflammatory response, vasa vasorum, atherosclerosis, and intramural hematoma may 

cause aneurysmal wall enhancement. Whether aneurysmal wall enhancement on VW-

MRI represents inflammatory process or not has not been answered yet [74]. Wall 

enhancement might imply fragility of the aneurysm wall which leads to remodeling, 

thinning, and daughter sac formation [75]. In terms of the size of aneurysms, wall 

enhancement was noted on all large aneurysms (≥7 mm) and 67% (20/30) of the small 

aneurysms (<7 mm) [76]. 

 

Angiogram-negative SAH  

 Angiogram-negative SAH comprises of approximately 15% of SAH case in 

which no causative vascular abnormality was found on angiography [77]. Angiogram-
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negative SAH can be classified into two subgroups: one is perimesencephalic SAH in 

which distribution of SAH is observed at the perimesencephalic region with low risk of 

recurrent hemorrhage and excellent clinical outcome. The other is non-perimesencephalic 

diffuse SAH in which angiogram-negative SAH may develop hydrocephalus, vasospasm, 

rebleeding, which results in poor clinical outcome due to the presence of undetected 

vascular abnormalities [78].  

 Recent retrospective study showed VW-MRI revealed that abnormal findings 

such as dissection and blood blister-like aneurysm in 14 out of 17 patients with diffuse 

non-aneurysmal SAH [23].  

 

AVM 

 Brain AVM is an abnormal connection between arteries and veins existing in the 

brain parenchyma without intervening capillary beds. The transition between artery and 

vein is called as a nidus. The risk of hemorrhage is associated with deep venous drainage, 

and deep and infratentorial brain location [79], and demographically children and females 

[80]. TOF-MRA with wide coverage like a whole brain MRA is necessary to evaluate 

feeders and nidus of AVM [81]. CE-MRA or MR-DSA is also performed for evaluation 

of brain MRA [82].  
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 VW-MRI is also considered important for evaluation of thrombus formation in 

nidus and the rupture risk of AVM. Comparison of VW-MRI and histopathology findings 

in a ruptured AVM revealed luminal thrombus in the vessel wall, fibrin deposition inside 

and outside the vessel, and inflammatory cell infiltration [83]. VW-MRI demonstrates 

nidal enhancement and perivascular enhancement adjacent to the nidus even in 

unruptured AVM [84]. Although enhancement on VW-MRI may represent remodeled 

vessel wall without active inflammation as well as true persistent inflammatory changes, 

further longitudinal studies are required [84].  

 

Moyamoya disease 

 3T MRA clearly visualize moyamoya vessels with the advantage of T1 

elongation and MT effect [85]. Intraluminal flow is often evaluated with TOF-MRA in 

moyamoya disease, and recent technical improvement such as compressed sensing 

enables us to perform TOF MRA with wide coverage [86].  

 Although initial studies for a small number of cases reported lack or weak 

contrast enhancement of vessel wall [87,88], recent studies showed a high frequency of 

ICA and MCA wall enhancement [89]. Another study revealed negative remodeling of 

the vessels in moyamoya patients [90]. However, most previous studies have focused on 
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differentiating moyamoya disease from atherosclerotic disease, and only a limited number 

of studies have focused on the relationship between VW-MRI and the disease activity 

[91]. Consequently, the clinical usefulness of VW-MRI for moyamoya disease is not 

established yet. 

 

Reversible cerebral vasoconstriction syndrome (RCVS) 

 RCVS is characterized by severe headaches, with or without other acute 

neurological symptoms, and diffuse segmental constriction of cerebral arteries that 

resolves spontaneously within 3 months [92]. A thunderclap headache is a severe pain 

that peaks within seconds and usually recurs for one to two weeks [92,93]. Patients 

typically report at least one trigger such as sexual activity, straining during defecation, 

stressful or emotional situations, physical exertion, coughing, sneezing, urination, bathing, 

showering, swimming, laughing, sudden bending down, postpartum state, pre-eclampsia, 

recreational drugs, vasoactive substances, and antidepressants [92,94]. 

 Imaging abnormalities include cortical SAH, cerebral infarction, intracerebral 

hemorrhage, and reversible brain edema [92,94]. Diagnostic criteria include the 

demonstration of segmental vasoconstriction. It is worth noting that even in the presence 

of hemorrhage or cerebral edema, initial angiogram may be normal if the examination is 
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performed early and vasoconstriction can be difficult to detect in very distal branches 

[95,96]. Follow-up examination should be performed several days later for detection of 

vasoconstriction if RCVS is clinically suspected. VW-MRI of RCVS shows minimal to 

no enhancement and minimal wall thickening [54]. VW-MRI may help distinguish RCVS 

from vasculitis and intracranial atherosclerosis. 

 

Clinical application of VW-MRI – Venous disease 

Venous structures 

 Venous structures are usually evaluated with susceptibility-weighted imaging 

(SWI). SWI is a high spatial resolution three-dimensional (3D) gradient echo MR 

technique that exploits the magnetic susceptibility differences. SWI shows 

deoxyhemoglobin inside the veins due to its paramagnetic property [97]. SWI visualize 

hypointense venous structures in acute large arterial infarction probably due to increase 

of deoxyhemoglobin and dilatation of veins [98].  

 VW-MRI is also useful for evaluation of venous structures. The positive findings 

of venous thrombus used to be non-filling of venous sinus or cerebral vein on CE-CT or 

CE-MRI. On the other hand, VW-MRI can show the thrombus as evident high signal 

intensity even in the subacute stage of venous thrombosis without administration of 
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contrast media [99] (Figure 6). 

 

Clinical application of VW-MRI – Vasculitis  

CNS Vasculitis 

 Adult primary angiitis of the central nervous system (PACNS) is a heterogenous 

disease although secondary CNS vasculitis is ruled out with complete work-up for 

malignancies, cardiopathy, systemic vasculitis, and connective tissue disorders. Most of 

PACNS shows multi-territorial, bilateral, distal acute stroke lesions with small to medium 

artery distribution, and a predominant carotid artery distribution [100]. Hemorrhagic 

infarctions and parenchymal hemorrhages were also frequently found [100]. Occasionally 

PACNS showed tumor-like appearance characterized with mainly small-sized vessel 

disease mimicking primary CNS lymphoma, however, global outcomes are good under 

appropriate treatment [101]. Tumor-like PACNS can be seen in younger patients 

compared with the other PACNS and accompanies seizure, and more enhancement on CE 

MRI [101]. 

 VW-MRI revealed a concentric contrast enhancement of arterial walls, localized 

in multiple vascular territories in patient with PACNS [102,103]. According to the 

systematic review of CNS vasculitis, features of VW-MRI for vasculitis affecting the 
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intracranial and extracranial arteries included vessel wall enhancement (89%), vessel wall 

thickening (72%), vessel wall edema (10%), or perivascular enhancement (16%) [104]. 

 

Giant cell arteritis (GCA)  

 GCA or temporal arteritis is the most common idiopathic large vessel vasculitis 

as well as Takayasu arteritis. Patients are usually greater than 50 years of age and it mainly 

affects the thoracic and abdominal aorta, and its primary branches. The etiology and 

pathogenesis of GCA are still unknown. Classic cranial manifestations consist of 

headache, scalp tenderness, jaw claudication, and vision loss. Vision loss occurs in 

approximately 20% of patients with GCA and immediate diagnosis and early initiation of 

intravenous high-dose corticosteroid therapy are required [105]. Stroke or transient 

ischemic attack occur in 1.5–7% of patients with GCA and are caused by stenosis or 

occlusion of the extradural vertebral or carotid arteries [106,105]. GCA tends to affect 

arteries with elastic tissue in their wall, whereas intradural arteries contain little or no 

elastic tissue. Inflammatory cells enter the vessel wall through vasa vasorum which is less 

in intradural arteries. These are thought to be the reasons why intracranial lesions of GCA 

are rare. Temporal artery biopsy remains the gold standard for diagnosis of GCA.  

 3D VW-MRI increased diagnostic accuracy of GCA compared with 2D VW-
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MRI [107]. 18F Fluorodeoxyglucose Positron emission tomography (FDG-PET)/CT is 

also useful for the diagnosis, therapy response assessment, and prognosis of GCA [108]. 

Arteritic anterior ischemic optic neuropathy (A-AION) is the most common cause for 

permanent vision impairment in patients with GCA [105]. A-AION is caused by arteritic 

ischemia of the anterior part of the optic nerve secondary to inflammatory occlusion of 

the posterior ciliary arteries. VW-MRI revealed a strong and blurry contrast enhancement 

aside the optic nerve and the adjacent orbital fat following the course of the posterior 

ciliary arteries [109]. 

   

Other vasculitis and inflammatory diseases 

 VW-MRI can depict inflammatory changes in a wide range of secondary 

vasculitis, including radiation-induced and those associated with infectious disease such 

as the human immunodeficiency virus (HIV), syphilis [110], herpes [111] and varicella 

zoster (Figure 7). Preliminary findings obtained with VW-MRI also suggested a possible 

inflammatory mechanism underlying a percentage of cryptogenic stroke in coronavirus 

disease 2019 (COVID-19) patients [112]. VW-MRI can identify inflamed intracranial 

vessels, enabling precise localization of biopsy targets [113]. MR findings are important 

in the management of infectious diseases [114], and VW-MRI may add values in 
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diagnostic workups.  

 

Clinical application of VW-MRI – Leptomeningeal diseases 

Leptomeningeal diseases 

 Image sequences used for VW-MRI are spin-echo based pulse sequences have 

relatively lower signal intensity in white matter, in part due to MT effects [115]. In 

addition, intravascular signal suppression facilitates detection of microscopic metastases 

and leptomeningeal carcinomatosis [116].  

 3D CE VW-MRI showed a higher sensitivity than CE gradient echo MRI in 

detection of leptomeningeal carcinomatosis [117] (Figure 8). 

 

Conclusion 

 VW-MRI has been applied in clinical practices not only in evaluation of 

vulnerable plaques, but various kinds of cerebrovascular diseases, vasculitis, and other 

diseases. High resolution 3D VW-MRI with good SNR has been available with or without 

additional preparation pulses. VW-MRI in addition to the routine MR imaging protocols 

may lead to better diagnostic workup when necessary.  
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Figure legends 

 

Figure 1  

A 75-year-old male with right ICA stenosis. (a) TOF-MRA shows stenosis of the proximal 

part of right ICA (arrow). (b) Axial MPR section of DANTE T1-SPACE shows 

hyperintensity plaque at the right ICA (arrow). (c) Coronal MPR section of DANTE T1-

SPACE shows hyperintensity plaque at the right ICA (arrow).  

 

Figure 2 

A 75-year-old male with acute onset left hemiparesis. (a) DWI shows hyperintensity in 

the right internal capsule (black arrow). (b) TOF-MRA shows no apparent inflow inside 

the right ICA (arrowheads). (c, d, e) 3D T1-SPACE shows intermediated signal inside the 

right ICA with slight hyperintense structure along the ICA wall (white arrows). 

Ultrasound shows mobile thrombus or oscillating thrombus in the right ICA (data not 

shown).  

 

Figure 3  

A 45-year-old male with right ICA dissection. The images of 40 days after the onset (a, 
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c), and 90 days (b, d) are shown: DANTE T1-SPACE (a, b) and TOF-MRA (c, d). (a) 

DANTE T1-SPACE shows hyperintensity in the false lumen, which represents the 

intramural thrombosis. (b) DANTE T1-SPACE obtained at 90 days after the onset showed 

that hyperintensity in the false lumen had regressed. (c) TOF-MRA showed inflow only 

in the true lumen. (d) The size of true lumen returned to normal at 90 days after the onset. 

 

Figure 4 

A 55-year-old female with temporal right hemiparesis. (a) DWI showed hyperintensity in 

the medial part of right frontal lobe (arrow). DWI also showed widespread hyperintensity 

in the medial aspect of right frontal lobe (data not shown). (b) MIP image of TOF-MRA 

shows discontinuous flow in the right ACA (arrowheads). (c) DANTE T1-SPACE showed 

high intensity spot at the right ACA indicating the thrombosis in the false lumen (arrow). 

(d) Source image of TOF-MRA showed a slow flow in the true lumen of right ACA 

(arrow). Acute stroke associated with dissection of right ACA was diagnosed. RCVS was 

also suspected because of thunderclap headache at onset. However, the stenosis of the 

right ACA did not improve over time. 

 

Figure 5  
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A male in his 50 years without any risk factor of atherosclerosis. He suffered from 

recurrent multiple small brain infarcts in the ipsilateral hemisphere. (a) CE-CTA shows 

the defect at the proximal part of right ICA (arrow). Carotid web was diagnosed. (b) Non-

enhanced MRA shows no apparent abnormality (arrow). (c) Non-enhanced DANTE T1-

SPACE showed intermediate signal at right ICA (arrow). (d) Contrast-enhanced DANTE 

T1-SPACE showed a thin septum projecting into the lumen of right ICA. 

 

Figure 6 

A 35 years-old male with venous infarction associated with the venous thrombosis of 

superficial cerebral vein and the vein of Labbé. (a, b) DANTE T1-SPACE showed 

hyperintensity in the thrombosed venous structures (arrowheads) as well as the venous 

hemorrhagic infarction in right temporal lobe (arrow). (c) A thin slice maximum intensity 

projection image of DANTE T1-SPACE clearly visualized thrombosed vein. 

 

Figure 7 

A 60-year-old male with right facial nerve palsy and neuralgia. CE DANTE T1-SPACE 

(a, c) and CE GRE T1WI (b, d) are shown. He was diagnosed as Ramsay-Hunt syndrome, 

and CSF analysis demonstrated varicella zoster meningitis. (a, c) CE DANTE T1-SPACE 
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showed enhancement of right facial nerve and geniculate ganglion (arrows). (b, d) CE 

GRE T1WI showed less pronounced enhancement in the facial nerve (arrows). Note that 

non-specific mild enhancement is often seen in geniculate ganglion, but the enhancement 

is more pronounced in this case. 

 

Figure 8 

A 10-year-old girl with CNS dissemination of acute lymphocytic leukemia. CE DANTE 

T1-SPACE showed enhancement of bilateral vestibular nerves (white arrows), abducens 

nerves (white arrowheads) (a), trigeminal nerves (black arrows) (b), and oculomotor 

nerves (white double arrows) (c). CE DANTE T1-SPACE showed leptomeningeal 

enhancement at the left occipital lobe (black arrowheads) (a, b). 
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